Continuous State-Space Models for Optimal Sepsis Treatment: a Deep Reinforcement Learning Approach

نویسندگان

  • Aniruddh Raghu
  • Matthieu Komorowski
  • Leo Anthony Celi
  • Peter Szolovits
  • Marzyeh Ghassemi
چکیده

Sepsis is a leading cause of mortality in intensive care units (ICUs) and costs hospitals billions annually. Treating a septic patient is highly challenging, because individual patients respond very differently to medical interventions and there is no universally agreed-upon treatment for sepsis. Understanding more about a patient’s physiological state at a given time could hold the key to effective treatment policies. In this work, we propose a new approach to deduce optimal treatment policies for septic patients by using continuous state-space models and deep reinforcement learning. Learning treatment policies over continuous spaces is important, because we retain more of the patient’s physiological information. Our model is able to learn clinically interpretable treatment policies, similar in important aspects to the treatment policies of physicians. Evaluating our algorithm on past ICU patient data, we find that our model could reduce patient mortality in the hospital by up to 3.6% over observed clinical policies, from a baseline mortality of 13.7%. The learned treatment policies could be used to aid intensive care clinicians in medical decision making and improve the likelihood of patient survival.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Reinforcement Learning for Sepsis Treatment

Sepsis is a leading cause of mortality in intensive care units and costs hospitals billions annually. Treating a septic patient is highly challenging, because individual patients respond very differently to medical interventions and there is no universally agreed-upon treatment for sepsis. In this work, we propose an approach to deduce treatment policies for septic patients by using continuous ...

متن کامل

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

Investigating Reinforcement Learning Agents for Continuous State Space Environments

Given an environment with continuous state spaces and discrete actions, we investigate using a Double Deep Q-learning Reinforcement Agent to find optimal policies using the LunarLander-v2 OpenAI gym environment.

متن کامل

Barycentric Interpolators for Continuous Space and Time Reinforcement Learning

In order to find the optimal control of continuous state-space and time reinforcement learning (RL) problems, we approximate the value function (VF) with a particular class of functions called the barycentric interpolators. We establish sufficient conditions under which a RL algorithm converges to the optimal VF, even when we use approximate models of the state dynamics and the reinforcement fu...

متن کامل

Manifold Representations for Value-Function Approximation in Reinforcement Learning

Reinforcement learning (RL) has shown itself to be a successful paradigm for solving optimal control problems. However, that success has been mostly limited to problems with a finite set of states and actions. The problem of extending reinforcement learning techniques to the continuous state case has received quite a bit of attention in the last few years. One approach to solving reinforcement ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017